An optimization-based, positivity-preserving spherical harmonic closure for linear, kinetic transport equations.

Cory D. Hauck

Computational Physics Group (CCS-2) Center for Nonlinear Studies (T-CNLS) Los Alamos National Laboratory cdhauck@lanl.gov

Collaboration with Ryan McClarren, Texas A&M

January 30, 2009

Outline

The P_N Equations

Negative Solutions

The Positive-Preserving Closure

Initial Implementation: 1-D

Initial Implementation: 2-D

The P_N Equations

Kinetic Description of Particle Systems

We considered a particle distribution described at the kinetic level by a **kinetic distribution function** (or **kinetic density** or **angular flux**) $F = F(x, \Omega, t)$, which gives the number of particles

- At position $x \in \mathbb{R}^3$,
- Traveling in direction $\Omega \in \mathbb{S}^2$,
- And time t ≥ 0.
- For simplicity, we assume
 - Particles scatter isotropically off a background material medium, characterized a **scattering cross-section** $\sigma = \sigma(x)$.
 - Particles are mono-energetic, with speed |v|=1

The Transport Equation

• The evolution of $F = F(x, \Omega, t)$ is governed by a kinetic **transport equation**:

$$\partial_t F + \Omega \cdot \nabla_x F + \sigma F = \frac{\sigma}{4\pi} \langle F \rangle.$$

- <u>Notation</u>: Angle brackets denote integration of the angular variable over the sphere S².
- An important quantity of is φ = ⟨F⟩, the concentration (or density or scalar flux), which is conserved:

$$\partial_t \phi + \nabla_x \cdot \langle \Omega F \rangle = 0.$$

Moment Equations

- Let $\mathbf{p} = \mathbf{p}(\Omega)$ be a vector of functions of Ω .
- Let $\mathbf{u}(x,t) := \langle \mathbf{p}F(x,\Omega,t) \rangle$ be moments of F with respect to \mathbf{p} .
- To derive moment equations, multiply the transport equation by p and integrate over all angles:

$$\partial_t \mathbf{u} + \nabla_{\mathsf{x}} \cdot \langle \Omega \mathbf{p} F \rangle + \sigma \langle \mathbf{p} F \rangle = \frac{\sigma}{4\pi} \langle \mathbf{p} \rangle \phi.$$

 To close the system, one must prescribe an ansatz to approximate F—

$$F(x,\Omega,t)\simeq \mathcal{F}(\mathbf{u}(x,t),\Omega)$$

—that satisfies the consistency relation

$$\langle \mathbf{p}\mathcal{F}(\mathbf{u}(x,t),\cdot)\rangle = \mathbf{u}$$
.

The Spherical Harmonic (or P_N) Closure

- For the P_N closure:
 - Components of p are spherical harmonic polynomials up to degree N.
 - The reconstruction F is a linear combination of components of
 p:

$$\mathcal{F}(\mathbf{u}(x,t),\Omega) = \mathbf{c}(x,t)^T \mathbf{p}$$

Consistency relation implies:

$$\mathbf{u} = \left\langle \mathbf{p} \mathbf{p}^T \right\rangle \mathbf{c}$$
 .

• The zeroth order moment is just ϕ :

$$\partial_t \phi + \nabla_{\mathsf{x}} \cdot \langle \Omega \mathcal{F} \rangle = 0.$$

Negative Solutions

Negative Solutions

- What is known?
 - 1. Solutions F to the transport equation are non-negative.
 - Solutions to the P_N equations in 1-D have positive particle concentrations.
 - 3. Solutions to the P_N equations in multi-D can have negative particle concentrations.

• Insight can be gained even from the one-dimensional setting.

Analysis in One Dimensional, Slab Geometries

- Decompose Ω into Cartesian components: $\Omega = (\mu, \eta, \zeta)^T$
- In slab geometries $F = F(x, \mu, t)$ satisfies

$$\partial_t F + \mu \partial_x F + \sigma F = \frac{\sigma}{2} \phi.$$

- The angular variable $\mu \in [-1,1]$ is the cosine between the x-axis and the direction of particle travel
- Notation: Angled brackets in 1-D denote integration over μ .

The P_N Equations in One Dimension

The P_N equations take the form

$$\partial_t \mathbf{u} + A \partial_x \mathbf{u} = -\sigma Q \mathbf{u}$$

where the flux matrix \boldsymbol{A} and the relaxation matrix \boldsymbol{Q} are given by

$$A_{nm} = \frac{n+1}{2n+1} \, \delta_{n+1,m} + \frac{n}{2n+1} \, \delta_{n-1,m}$$

$$Q_{nm} = \delta_{nm} (1 - \delta_{n,0})$$

• A is diagonalizable: $A = L\Lambda R$. Eigenvalues $\{\lambda_0 \cdots \lambda_N\}$ form the N+1-point Gauss-Legendre quadrature set.

Discrete Ordinate Formulation

• A particular choice of right and left eigenvectors diagonalizes the P_N equations into an equivalent discrete ordinate form:

where $\mathbf{e} = [1, ..., 1]^T$.

• The *n*-th component of **w** is a solution to the transport equation along the direction $\mu = \lambda_n$, but with initial condition

$$\left| \mathcal{F}(\mathbf{x}, \mu, 0) = \mathbf{c}^T(\mathbf{x}, 0) \mathbf{p}(\mu) = \left\langle \mathbf{p} \mathbf{p}^T \right\rangle^{-1} \left\langle \mathbf{p}^T F(\mathbf{x}, \cdot, 0) \right\rangle \mathbf{p}(\mu) .$$

Discrete Ordinate Formulation

• Density is a weighted sum of components of w:

$$\phi = \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{w} \,, \tag{1}$$

where components of α are Gauss-Legendre quadrature weights.

A Semi-Implicit, Upwind (SIU) Scheme

• First order, semi-implicit method based on upwinding:

$$\begin{aligned} \mathbf{w}_{j}^{s+1} &= \mathbf{w}_{j}^{s} - \Delta t \Lambda^{+} \left(\frac{\mathbf{w}_{j}^{s} - \mathbf{w}_{j-1}^{s}}{\Delta x} \right) \\ &+ \Delta t \Lambda^{-} \left(\frac{\mathbf{w}_{j+1}^{s} - \mathbf{w}_{j}^{s}}{\Delta x} \right) - \Delta t \sigma \left(\mathbf{w}_{j}^{s+1} - \mathbf{e} \phi_{j}^{s+1} \right) \end{aligned}$$

In terms of the moments:

$$\mathbf{u}_{j}^{s+1} = \mathbf{u}_{j}^{s} - \Delta t A \left(\frac{\mathbf{u}_{j+1}^{s} - \mathbf{u}_{j-1}^{s}}{2\Delta x} \right)$$
$$- \Delta t |A| \left(\frac{\mathbf{u}_{j+1}^{s} - 2\mathbf{u}_{j}^{s} + \mathbf{u}_{j-1}^{s}}{2\Delta x} \right) - \Delta t \sigma \mathbf{u}^{s+1}$$

Positivity Preserving Property

Proposition

The SIU scheme preserves the positivity of the components of \mathbf{w} and the density ϕ under the CFL condition $\Delta t < \Delta x$.

However, this result says nothing about the angular reconstruction for values of $\mu \neq \lambda_n$.

Numerical Example: the P_3 System

Apply SIU algorithm to a test problem with:

- Periodic boundary conditions.
- Initial condition for ϕ is

$$\phi(x,0) = \begin{cases} 2.0, & x \in (0.8, 1.2), \\ 0.0, & x \in [0, 0.8] \cup [1.2, 2.0], \end{cases}$$

All other moments are initially zero.

x = 1.

The Positive-Preserving Closure

Variational Formulation of the P_N Closure

 The P_N closure can also be formulated as the solution to the following optimization problem

minimize
$$\frac{1}{2}\left\langle |f|^2\right\rangle$$
 subject to $\left\langle \mathbf{p}f\right\rangle =\left\langle \mathbf{u}\right\rangle$

A New, Modified Closure

 <u>IDEA</u>: Modify the P_N closure by adding an inequality constraint to the optimization problem

$$\begin{array}{ccc} \text{minimize} & \frac{1}{2} \left< |f|^2 \right> \\ \text{subject to} & \left< \mathbf{p} f \right> = \left< \mathbf{u} \right> \,, \,\, f \geq 0 \end{array}$$

• Enforcing positivity everywhere is not possible. Discretize the problem on a quadrature set $\mathcal{Q} \in [-1,1]$:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \sum_{\Omega_k \in \mathcal{Q}} \omega_k [f(\Omega_k)]^2 \\ \\ \text{subject to} & \sum_{\Omega_k \in \mathcal{Q}} \omega_k \mathbf{p}(\Omega_k) f(\Omega_k) = \langle \mathbf{u} \rangle \;, \; f(\Omega_k) > 0 \; \forall \; \Omega_k \in \mathcal{Q} \end{array}$$

The Optimization

Figure: Example optimization output.

Initial Implementation: 1-D

Kinetic Scheme

- Challenge: Ensure positivity is not destroyed by the scheme. of cells $I_i = [x_{i-1/2}, x_{i+1/2}]$ of width Δx .
- Semi-discrete, finite volume formulation:

$$\partial_t F_i + \mu \frac{F_{i+1/2} - F_{i-1/2}}{\Delta x} + \sigma F_i = \frac{\sigma}{2} \phi_i$$

Kinetic Scheme

Determine pointwise edges values with upwinding

$$\begin{aligned} \partial_t F_{i,k} + \max(\mu^k, 0) \frac{F_{i,k} - F_{i-1,k}}{\Delta x} \\ + \min(\mu^k, 0) \frac{F_{i+1,k} - F_{i,k}}{\Delta x} + \sigma F_{i,k} = \frac{\sigma}{2} \phi_i \end{aligned}$$

 Apply the quadrature, using the equality constraints to evaluate the moments and relaxation terms:

$$\partial_t \mathbf{u}_i + \sum_{\mu_k > 0} \omega_k \frac{F_{i,k} - F_{i-1,k}}{\Delta x} + \sum_{\mu_k < 0} \omega_k \frac{F_{i+1,k} - F_{i,k}}{\Delta x} = Q \mathbf{u}_i$$

Properties of the Algorithm

GOOD:

- 1. Closure is local.
- 2. Reverts back to standard P_N when positivity is not violated.

BAD

- 1. Only first-order.
- 2. NOT asymptotic preserving.

Numerical Example: Pulse in One Dimension

- Periodic boundary conditions.
- Density ϕ is initially a delta function at x = 1.
- All other moments initially zero.

Figure: Results, 1-D Pulse, $t = 1.0.49 \times 10^{-4}$

1-D Pulse Results

1-D Pulse Results

Initial Implementation: 2-D

Implementation: 2-D

- Recall $\Omega = [\mu, \eta, \zeta]^T$.
- In two dimensions, the transport equation is

$$\boxed{\partial_t F + \mu \partial_x F + \eta \partial_y F + \sigma F = \frac{\sigma}{4\pi} \phi}$$

• Choose a quadrature set Q and evolve F along directions $\mu_k, \eta_k \in Q$.

Implementation: 2-D

• A first-order, finite volume:

$$\begin{split} \partial_t F_{i,j,k} + \max(\mu_k, 0) \frac{F_{i,j,k} - F_{i-1,j,k}}{\Delta x} + \min(\mu_k, 0) \frac{F_{i+1,j,k} - F_{i,j,k}}{\Delta x} \\ + \max(\eta_k, 0) \frac{F_{i,j,k} - F_{i,j-1,k}}{\Delta y} + \min(\eta_k, 0) \frac{F_{i,j+1,k} - F_{i,j,k}}{\Delta y} \\ + \sigma_{i,j,k} &= \frac{\sigma}{4\pi} \phi_{ij} \end{split}$$

Integrate this discretization against p; apply constraints:

$$\partial_{t}\mathbf{u}_{i,j} + \sum_{\mu_{k}>0,\eta_{k}} \omega_{k} \frac{F_{i,j,k} - F_{i-1,j,k}}{\Delta x} + \sum_{\mu_{k}<0,\eta_{k}} \omega_{k} \frac{F_{i+1,j,k} - F_{i,j,k}}{\Delta x} + \sum_{\mu_{k},\eta_{k}>0} \omega_{k} \frac{F_{i,j,k} - F_{i,j,k}}{\Delta y} + \sum_{\mu_{k},\eta_{k}<0} \omega_{k} \frac{F_{i,j+1,k} - F_{i,j,k}}{\Delta y}$$

Numerical Example: Line Source in Two Dimension

- Periodic boundary conditions.
- Density ϕ is initially a delta function at x = y = 0.
- All other moments initially zero.

Figure: Linesource Problem, t = 1.0.

Figure: Linesource Problem, t = 10.0.

Future Work

- Higher Order Discretizations
- Asymptotic Preserving Implementation.
- Parallelization.

Acknowledgments

- Center for Nonlinear Studies, Los Alamos.
- DOE, Advanced Scientific Computing Research.

